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Abstract

Relatively short electrodynamic tethers can use solar power to 'push' against a planetary

magnetic field to achieve propulsion without the expenditure of propellant. The groundwork has

been laid for this type of propulsion. Important recent milestones include retrieval of a tether in

space (TSS-1, 1992), successful deployment of a 20-km-long tether in space (SEDS-1, 1993), and

operation of an electrodynamic tether with tether current driven in both directions (PMG, 1993).

The planned Propulsive Small Expendable Deployer System (ProSEDS) experiment will use the

flight-proven Small Expendable Deployer System (SEDS) to deploy a 5 km bare copper tether

from a Delta H upper stage to achieve -0.4 N drag thrust, thus deorbiting the stage. The

experiment will use a predominantly 'bare' tether for current collection in lieu of the endmass
collector and insulated tether approach used on previous missions. The flight experiment is a

precursor to utilization of the technology on the International Space Station for reboost and the

electrodynamic tether upper stage demonstration mission which will be capable of orbit raising,

lowering and inclination changes - all using electrodynamic thrust. In addition, the use of this

type of propulsion may be attractive for future missions at Jupiter.

Electrodynamic Tether Propulsion Principles

An electrodynamic tether can work as a thruster because a magnetic field exerts a force on a

current-carrying wire. This force is perpendicular to the wire and to the field vector. If the

current flows downward through a



tether connected to a spacecraft, the force exerted by the

geomagnetic field on the system has a component that

accelerates the satellite along the direction in which it is

already moving.

An orbiting system, by virtue of its motion through

the Earth's magnetic field, experiences an electric field

(vxB) perpendicular to its direction of motion and to the

geomagnetic field vector. For an eastward-moving sys-

tem, such as most Earth-orbiting spacecraft, the field is

such that the electrical potential decreases with increas-

ing altitude (at a rate of- 100 V/km for a 400-km circular
orbit). In order to drive a current down the tether, it is

necessary to overcome this induced electromotive force

(emf).

Thus, this propulsion system requires a power sup-

ply and may be considered a type of electrical thruster.

Calculations indicate an average thrust of 0.5 N from

5 kW and 0.8 N from 10 kV¢; assuming a tether _0 km

long, with a mass <200 kg. Electrical power from solar

panels could be utilized for this thruster power with night

operation on battery power as an option.

A hollow cathode plasma contactor would be used

on the spacecraft to eject electrons; thus, the tether must

be deployed vertically downward for a boost application.

Thanks to the power supply, which is placed in series

between the plasma contactor and the upper end of the

tether, the upper end is at a higher electrical potential than

the plasma for some distance below it. This distance may

be greater than the tether length if the applied voltage

exceeds the motionai emf. The ionospheric electrons be-

low the spacecraft would "like" to get to the higher po-

tential at the upper end of the tether. If the electrons can

make contact with the tether, they will travel up it, giving
a current flow in the correct direction for boost.

The way in which the charge exchange between tether

and plasma takes place depends upon the specifics of the

system, and this aspect (specifically the electron collec-

tion, which is the difficult part) is the focus in designing a

system capable of producing sufficient thrust with a rea-

sonably short tether.

The magnitude of the thrust force is dependent upon
the motional emf (between the two ends of the tether),

the average current in the tether, and the orbital speed.

Thus, the product of the tether length and average tether

current determines the thrust for given orbital/magnetic

conditions. Generally speaking, a shorter tether will have

a smaller impact on the spacecraft environment, so a com-

bination of high current with short tether length is the

goal.

Boost (thrust forces of order 1 N) with a tether no

longer than 10 km requires tether currents of order 10 A.

The critical issue is how to draw ionospheric electrons at

that rate. The standard tether carries insulation along its

entire length, exchanging current with the ionosphere only

at the ends: TSS-1R carried a passive metallic sphere as

anode; PMG carried an active (plasma-ejecting) contactor.

Current collected to a passive, biased sphere in a

magnetized plasma calculated by the standard Parker-

Murphy (PM) model (taking into account magnetic ef-

fects, which are dominant) grows as the square root of

the bias voltage, an important fact for fixed-area collec-
tors.

A preliminary analysis of the measured TSS- 1R cur-

rents indicates that they were typically greater than the

PM model predictions (using values of the electron den-

sity and temperature estimated from ionospheric models

and a satellite voltage calculated with some uncertainty).

The TSS-IR data do not, however, appear to point to a

dependence of current on voltage greatly different from

that of PM for higher voltages. Even though, for example,

a TSS- 1R current of 0.5 A at 350 V bias may surpass PM

model estimates, it could still imply a voltage of roughly

35 kV to reach 5 A for the same plasma parameters (which

would require over 175 kW for a thrust of 0.7 N with a

10-km-long tether!).

Active anodes (plasma contactors) have been devel-

oped in an attempt to solve both space-charge shielding

and magnetic guiding effects by creating a self-regulat-

ing plasma cloud to provide quasi-neutrality and by emit-

ting ions to counterstream attracted electrons and produce

fluctuations that scatter those electrons off magnetic field

lines. The only tether experiment to use an active anode
so far was the PMG, which reached 0.3 A in flight under

a 130-V bias and the best ionospheric conditions. Unfor-

tunately, there is no way to scale the results to high cur-

rents. The discouraging fact was that collected current

decreased sharply with the ambient electron density at

night.

Fortunately, there is another tether design option--
the bare tether.l

New Technology_ Tether Enhances (_urr_nt Collection

A bare-tether design represents a breakthrough that
makes short-tether electrodynamic reboost with moderate

power requirements practical. The tether itself, left

uninsulated over the lower portion, will function as its own

very efficient anode. The tether is biased positively with
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respecttotheplasmaalongsomeorallofitslength.The
positivelybiased,uninsulatedpartofthetetherthencol-
lectselectronsfromtheplasma.

Thefollowingfeaturesargueinfavorof the bare-tether

concept:

1. The small cross-sectional dimension of the tether

makes it a much more effective collector of electrons (per

unit area) from the space plasma than is a large sphere

(such as the TSS-1R satellite) at equal bias (Fig. 1). This
is because the small cross-dimension of the tether al-

lows its current collection to take place in the orbital-

motion-limited regime (OML), which gives the highest

possible current density.

2. The large current-collection area is distributed

along the tether itself, eliminating the need for a large,

massive and/or high-drag sphere or a resource-using

plasma contactor at the upper end of the tether. This sub-

stantially reduces the center of gravity shift in both cases

and reduces the cost and complexity in the case of the
active contactor.

3. The system is self-adjusting to changes in electron

density. This is accomplished by a natural expansion of

the portion of the tether that is biased positively relative

to the ionosphere whenever the density drops.

Current Collected by a BareWire (Top) and Sphere (Bottom)
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Fig. 1. Current collection efficiency of the bare

tether compared to a sphere of

equal area.

Features (I) and (2) combine to provide an ability to

collect large currents with modest input power levels be-

low a candidate system that can produce average thrusts
of 0.5-0.8 N, for input power of 5-10 kW.

Charged-particle collection is governed by the stron-
ger gradients associated with the smaller dimensions and

is thus a two-dimensional process, the length being irrel-
evant to the density of current collected. For a radius, small

compared to both Debye length and gyroradius, there are

neither space-charge nor magnetic-guiding effects, and

we are in the (OML) regime of standard Langmuir theory.

In the OML regime, the current takes the largest possible
value for the given geometry and bias. Better still, it turns

out that in cylindrical geometry, the OML regime holds

for radius-to-Debye length ratios even of order unity.

Hence, a cylinder of 5-mm radius (about one Debye

length, and small compared with gyroradius) works in
the OML regime.

For a cylinder of 2-mm radius and 2.5-km length in a

plasma with an electron density and temperature of 1012 m3

and 0.15 eV, respectively, the bias voltage required to

collect 10A is only 100V! But a tether is just a long, thin

cylinder. Thus, if left uninsulated along part of its length,

a tether can act as its own anode, capturing electrons effi-

ciently over some positively biased segment.

For an orbiting, current-carrying tether, the bias will

actually vary along the tether because of both the mo-

tional electric field and the ohmic voltage drop. The elec-

tron current to the tether will thus vary with height. Along
the uninsulated part, of the tether, the tether current will

decrease with decreasing altitude, until the point is reached

at which the tether is at zero bias with respect to the plasma
(or the end of the tether is reached). Assuming there is a

point of zero bias on the tether, then below that point an

ion current (much smaller because of the high ratio of ion

mass to electron mass) that decreases somewhat the aver-

age tether current will be collected, due to the negative
bias.

The bias required to collect a given OML current

varies as the inverse square of the collecting area, mak-

ing it possible to reduce the required bias substantially by

modestly increasing the collecting area. Since the current

collected by an electron-collecting length L B grows
roughly as (LB)3/2, the tether can automatically accom-

modate drops in density by increasing the length of the
collecting segment, shifting the zero bias point downward.

Figure 2 shows the variation in thrust with electron den-

sity for a 10-km tether with a 5-km-long bare segment.

Thrust drops only 10 percent as density drops by a fac-

tor of 10. The reason is clear: the collecting length has

increased from 1 to 4 km (emf is 1,200 V; input power I0
kW). This ability to maintain thrust levels with low elec-

tron densities makes nighttime boost possible.
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Technology Applications

Reboost of the ISS

A concept design for an electrodynamic tether
thruster capable of delivering 0.5-0.8 N of thrust to the

ISS at a cost of 5-10 kW of electrical power consists of
a 10-kin-long aluminum tether in the form of a thick

ribbon (0.6 mm by 10 mm). Despite its length, the tether
would weigh only around 200 kg. Since the bare portion

of the tether is to act as the electron collector, a down-

ward deployment of the tether is dictated by the physics

of the eastward-moving platform.

Fig. 2. Variation in thrust with electron density for a

10-km tether with a 5-km-long bare segment.

Another important fact is that the OML current is

identical for all cylinders with convex cross sections of

equal perimeter. 2 With maximum crosswise dimension

(here about 10 mm) fixed by OML considerations, one is

allowed to choose the cross-sectional shape. This frees

us to choose a tape or ribbonlike tether, for example. The

tapelike geometry gives somewhat better performance

than a circular cross-section tether of equal length and

mass and appears to have advantages related to deploy-
ment and thermal concerns.

On the whole, the simplicity of the design, in addi-

tion to the ability to collect high currents and to accom-

modate density fluctuations by varying the collecting area,

make the bare-tether concept particularly attractive. Bare

tethers are mostly free of the gross performance uncer-

tainties that cloud the use of active, or spherelike passive,

contactors. The OML theory has been substantiated for

both quiescent and flowing plasmas in the laboratory, and

also in rocket and satellite flights, at moderate voltages. 3-5

Ground simulation of electron collection in orbital

conditions is possible because there is no need to re-

produce the cylinder length-to-radius ratio in the lab;

also, the orbital velocity should have no effect at the
low radius-to-gyroradius ratio of interest. A series of

plasma chamber tests were conducted at the NASA

Marshall Space Flight Center in the spring of 1997 with
promising results. Figure 1 shows the current collection

efficiency of the bare tether compared to a sphere of equal

area. The two-dimensional geometry also makes a large-

scale program of particle-in-cell simulations feasible, and

we anticipate using such simulations to study various

tether geometries in our search for increased performance
with lower mass.

The upper part of the tether will be insulated. There

are two reasons for this. First, there is the necessity for

preventing electrical contact from developing across the

plasma between the upper portion of the tether and the

Space Station, which (when the system is operating) are

separated by an electrical potential difference of around a

kilovolt. Secondly, the insulation provides for greater

thrust at a given input power. This comes from the fact

that the largest tether-to-plasma bias occurs at the upper

end, and decreases down the tether. A completely bare

tether would draw the maximum current through the

power supply, but the current would be strongly peaked

at the upper end of the tether. Keeping the input power
constant, we can substantially increase the average cur-

rent in the tether, and hence the thrust, by insulating the

tether over much of its upper portion, collecting current

with the lower portion, and having a constant current in

the upper part.

Determining the optimal fraction to insulate is part

of the design effort for a "bare" tether reboost system.

The preliminary design has the upper 50 percent of the

tether insulated. Even greater thrust during daytime op-

eration could be obtained with a higher fraction, but the
nighttime adjustability would suffer.

The system provides flexibility in the sense that the

thrust obtained depends almost linearly on the input power,

as seen in Figure 3.

The bare-tether design has essentially "cured" the

problem of day/night thrust fluctuations. But fluctuations
in thrust due to fluctuations in the induced emf as the

system encounters a varying geomagnetic field around

the orbit are a fact of life for any tether-based system.

Figure 4 shows variations in thrust around two typical
revolutions of the ISS orbit for the 10-km-long electrody-

namic tether thruster described in this section, as it oper-

ates at a constant power of 10 kW. Dependence on elec-

tron density is weak, as expected. Thrust curve basically
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tracks emf. Figure 5 shows a comparison of thrust gener-
ated for input powers of 5 kW and 10 kW tbr same tether

and orbit as Figure 3.
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Fig. 3. Variation of thrust with input power for
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Fig. 5. Comparison of thrust generated for input
powers of 5 kW and 10 kW.

Given the level of the current the system may draw,
the system will almost certainly require its own cathodic

plasma contactor at the Station end. The contactors cur-

rently under development at NASA Lewis Research Cen-
ter should be well suited for this function. If thrusts >0.5 N

are desired, it is likely that the system will also have to
rely on the ISS's plasma contactor as well, or on a second

dedicated contactor, since currents over the 10-A rating
of the contactors could be required.

The value in an electrodynamic tether reboost sys-

tem lies in its ability to couple power generation with

thrust. Heretofore, the electrical and propulsion systems

have been effectively totally separate entities. Outfitting
ISS with an electrodynamic reboost tether severs the most

critical and constraining dependency on Earth--propel-
lant resupply. The Station can supply its own power but

not its own propellant. Without an electrodynamic tether,

the specter of SkyLab and the words "reentry" and "at-

mospheric burnup" will forever haunt the minds of any-

one who has an interest in the program. Add a tether and

some additional storage capacity for supplies, and sud-
denly a l-year interval between visits to the Station be-
comes conceivable.

Even if the current frequency of resupply flights to

the Station is maintained, with an electrodynamic tether

the Station Program has the option to trade kilowatts for

increased payload capacity. Resupply vehicles can deliver

useful cargo like payloads, replacement parts, and crew

supplies rather than propellant. Within the range of 5 to

I0 kW, a crude approximation of 1,000 kg of user pay-

load gained per kilowatt expended per year appears rea-
sonable.

Yet another dimension to propellantless reboost must
be considered. Station users have been allocated a minimum

of 180 days of microgravity per year. Current planning es-

sentially halts science activity during reboost maneuvers.

Low-thrust, electrodynamic tether reboost could be per-

formed over long duration, as opposed to short-duration, high-

thrust propulsive maneuvers. The 0.5--0.8 N thrust provided
by a 10-km tether more than counteracts the Station's atmo-

spheric drag on a daily basis. Recent analysis indicates that an

electrodynamic tether can compensate for the drag while it is

occurring, without disrupting the microgravity environment.

Fluctuations in the induced voltages from the Earth's mag-
netic field and in electron densities will create "turbulence"

through which the electrodynamic tether-driven Station must

fly; can load-leveling control systems compensate for these
pockets and maintain microgravity levels? In this case, a new

realm of possibilities opens up for long-duration microgravity
experiments. The allure of this self-propelled space facility is

certainly remarkable, and offers potential advantages.
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Reusable Upper Stage Propulsign Jovian Exploration

An electrodynamic upper stage could be used as an
orbital tug to move payloads in low-Earth orbit (LEO)
after launch from a Reusable Launch Vehicle or other

launch vehicle. The tug would rendezvous with the pay-
load and launch vehicle, dock/grapple the payload, and
maneuver it to a new orbital altitude or inclination within

LEO without the use of boost propellant. The tug could
then lower its orbit to rendezvous with the next payload

and repeat the process. Such a system could conceivably
perform several orbital maneuvering assignments with-

out resupply, making it a low recurring cost space asset.
The performance of a 10-kW, 10-km tether system is il-

lustrated in Figures 6 and 7. The performance of an elec-
trodynamic tether thruster varies with altitude in the mag-

netosphere (where i is the orbital inclination) (see Fig. 6).
Electrodynamic tethers can be used to change orbital in-

clination without propellant consumption. To determine

the available inclination change for a spacecraft/payload
mass, divide the "specific inclination rate" indicated by

the total system mass at a given altitude (see Fig. 7).
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Following the successful Galileo mission, there is

considerable interest in a follow-on mission to Jupiter and
its moon, Europa. Due to low solar luminosity Sun, ra-
dioactive thermoelectric generators (RTG's) were used

for electrical power by Galileo and in all past deep space

missions. The finite risk of releasing plutonium into the
terrestrial environment may rule out RTG's on future mis-
sions. The possibility of using solar panels for electrical

power generation has improved in recent years with im-
provements in this technology. The high levels of radia-

tion in the Jovian system, however, are expected to rap-
idly degrade the effectiveness of solar arrays as a result

of extended exposure. Extended operations in the Jovian
system, or around any planet, also typically require use

of an expendable propellant for orbital maneuvering. This
may lead to high "wet" spacecraft mass at launch and/or
limited lifetime on orbit. It is for these reasons and be-

cause of the strong magnetic field and rapid planetary

rotation that electromagnetic tethers are being considered
for use in the Jovian magnetosphere. Preliminary analy-

sis indicates that a megawatt of power can be theoreti-
cally generated by a 10-km tether in near Jovian space

(see Fig.8). Specifically, such a tether operating near the
planet would experience induced voltages greater than

50,000 V, currents in excess of 20 A, generate approxi-
mately 1 MW of power and experience more than 50 N
of thrust! 6 Needless to say, this would pose significant

engineering challenges for mission planners.

Power (W)

10 -

-5

-10
-1( -5 0 5 10

X- Axis (Ri)

Fig. 7. Electrodynamic tethers change orbital

inclination without propellant

consumption.

Fig. 8. Power generated in a 10-km tether at Jupiter.
Contours are drawn for even decades of

power from 1 W to 10 MW.
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ProSEDS Flight Experiment

A flight experiment to validate the performance of the

bare electrodynamic tether in space and demonstrate its ca-

pability to perform thrust is planned by NASA for the year
2000. 7 The ProSEDS experiment will be placed into a 500-

km circular orbit as a secondary payload from a Delta II

launch vehicle. The flight-proven SEDS will be used to de-

ploy a 5-km predominantly bare copper wire attached to 20

km of insulating Spectra tether and 25-kg endmass. The

deployer and endmass mounted on the Delta II upper stage
are shown in Figure 9.

Delta II SecondStage

Fig. 9. ProSEDS experiment hardware on the

Delta H upper stage. 8

Once on orbit, the SEDS will reel out the tether and

endmass system to a total length of 25 km. Upward de-

ployment will set the system to operate in the generator

mode, thus producing drag thrust and producing electri-
cal power. The drag thrust provided by the tether will

deorbit the Delta II upper stage in approximately 3 weeks,

versus its nominal 1.5-yr lifetime in a 500-km circular

orbit. Approximately 100 W electrical power will be ex-

tracted from the tether to recharge mission batteries and

to allow extended measurements of the system's perfor-
mance until it reenters.

Conclusions

Tether technology has advanced significantly since
its inception over 30 years ago. The recent successes of

the SEDS system shows that tethers are ready to move

from experiment and demonstration to application. One

of the most promising applications for tethers is space

propulsion. The use of electrodynamic tether propulsion

for reusable upper stages, planetary missions, space sta-

tion, and launch vehicle deorbit applications will soon be

demonstrated with the ProSEDS experiment.

7
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